Efficient Multiclass Boosting Classification with Active Learning

نویسندگان

  • Jian Huang
  • Seyda Ertekin
  • Yang Song
  • Hongyuan Zha
  • C. Lee Giles
چکیده

We propose a novel multiclass classification algorithm Gentle Adaptive Multiclass Boosting Learning (GAMBLE). The algorithm naturally extends the two class Gentle AdaBoost algorithm to multiclass classification by using the multiclass exponential loss and the multiclass response encoding scheme. Unlike other multiclass algorithms which reduce the K-class classification task to K binary classifications, GAMBLE handles the task directly and symmetrically, with only one committee classifier. We formally derive the GAMBLE algorithm with the quasi-Newton method, and prove the structural equivalence of the two regression trees in each boosting step. To scale up to large datasets, we utilize the generalized Query By Committee (QBC) active learning framework to focus learning on the most informative samples. Our empirical results show that with QBC-style active sample selection, we can achieve faster training time and potentially higher classification accuracy. GAMBLE’s numerical superiority, structural elegance and low computation complexity make it highly competitive with state-of-the-art multiclass classification algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Theory of Multiclass Boosting

Boosting combines weak classifiers to form highly accurate predictors. Although the case of binary classification is well understood, in the multiclass setting, the “correct” requirements on the weak classifier, or the notion of the most efficient boosting algorithms are missing. In this paper, we create a broad and general framework, within which we make precise and identify the optimal requir...

متن کامل

Online multiclass boosting

Recent work has extended the theoretical analysis of boosting algorithms to multiclass problems and to online settings. However, the multiclass extension is in the batch setting and the online extensions only consider binary classification. We fill this gap in the literature by defining, and justifying, a weak learning condition for online multiclass boosting. This condition leads to an optimal...

متن کامل

Multi-Resolution Cascades for Multiclass Object Detection

An algorithm for learning fast multiclass object detection cascades is introduced. It produces multi-resolution (MRes) cascades, whose early stages are binary target vs. non-target detectors that eliminate false positives, late stages multiclass classifiers that finely discriminate target classes, and middle stages have intermediate numbers of classes, determined in a data-driven manner. This M...

متن کامل

Multiclass Semi-supervised Boosting Using Different Distance Metrics

The goal of this thesis project is to build an effective multiclass classifier which can be trained with a small amount of labeled data and a large pool of unlabeled data by applying semi-supervised learning in a boosting framework. Boosting refers to a general method of producing a very accurate classifier by combining rough and moderately inaccurate classifiers. It has attracted a significant...

متن کامل

The Boosting Approach to Machine Learning An Overview

Boosting is a general method for improving the accuracy of any given learning algorithm. Focusing primarily on the AdaBoost algorithm, this chapter overviews some of the recent work on boosting including analyses of AdaBoost’s training error and generalization error; boosting’s connection to game theory and linear programming; the relationship between boosting and logistic regression; extension...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007